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SIMPLE EXAMPLES OF
NONLINEAR TRUSS BEHAVIOR
by
Philip G. Hodge, Jr. '
Professor of Mechanics

University of Minnesota

1. Introduction. The theory of linear elasticity is a very

"nice" mathematical theory with many convenient features such as
superposition, uniqueness, and the equivalence of proportional
loading to proportional stressing. Theories involving nonlinear
material behavior do not necessarily have these nice features, and
it is instructive to consider very simple examples which dramatically
illustrate this fact.

In 1951 Drucker (1) considered a simple 3-bar truss )
essentially similar to the one shown in Fig. 1 which is subjected
to a single monotonically increasing vertical load corresponding
to the load Q. In Drucker's example each bar is made of an
elastic/perfectly-plastic material with identical elastic properties
but different yield strengths. For a suitable choice of yield
strengths, bar 1 will first yield in compression but will then
unload and will eventually yield in tension when the truss fails. ~ ==
The present author [2, 3) has made frequent use of trusses similar ~
to the one in Fig. 1. p(

i

The present note shows how this truss can be used to
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discuss two different models of non-linear material behavior
in relation to the above-mentioned features of supcrposition,
uniqueness, and proportional stressing.

The two models to be treated are the familiar elastic/
perfectly~-plastic (E/PP) one illustrated by the dashed curve in
Fig. 2, and an iéealized elastic buckling (E/B) model indicated
by the solid curve. Since we are primarily concerned with
compressive stresses, we define the bar shortening and the ney-

ative bar force by

The buckling model places no limit on negative values of
C; (it would be a trivial extension to construct a cumbined
model wnich yielded in tension and buckled in compression) but
an equally important difference in the two models occurs on
unloading. At point B, for example, the E/PP model unloads
along BCD whereas the E/B model retraces the loading path BAOG.

The next section lists the defining equations for the truss
in Fig. 1 according to the two models, and the concluding section
defines three specific examples chosen to illustrate reverse stressing
under a monotonic locad, non-uniqueness, and superposition, in
that order. A summary of results are given in Section 3, and
some details of the solutions are included in the Appendix,

2. Equations. The cross buair AB is assumed rigid and the
three vertical bars all have the same modulus E, area A, and
minimum moment of inertia I. We find it convenient to use
asterisks to represent physical quantities and define dimensionless
variables as indicated below. For both models we detine the statt:

ness of bar 2 by

P
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(2)

¢ the

t he

P and ¢,

k = AE/H
where H is the length of the bar. For the E/B model we us
simple Euler buckling formula for a pinned bar and denote
shortening of bar 2 at the onset of buckling by
s Ser _nfer m o
s K 2 AE ~ AN
We then define dimensionless displacements v and w, loads
shortenings si,and compressive forces Ci by
* . *
v = v /s W =w /S s. = 8./s
i i
L. . _ *
P =P /ks Q = Q /ks Ci = Ci/ks

For the E/PP model, let Y be the yield force in bar 2

define the above variables by the similar formulas

L] *
kv /Y w = kw /Y s

<
I

*
ksi/Y

@]
fl

* ~ *
P /Y Q= Q /Y C;/Y

o)
]

and

(5)

We denote the length of bar i by uiH where a, = 1 and we

will choose a, and ay in each exarple. In view of the above

1

definitions, the shortening at whi h bar i buckles is then given

by

(5)
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So that the two models will have the same scale in Fiq. 2, we
choose the yield stress in bar i to be inversely propourtional to

the square of its length, hence

7 2
Yi = l/ni (7}

We assume that all displacements are small so that the only
non~linearity is the material behavior, and the three bars can be

taken to remain vertical. The kinematics are given by

Asi = (48w - 3Av, Av, 24v - Aw) (8)

where we find it convenient to use the incremental form for
all equations. The statics are obtained from moment equilibrium

about the two loads:

Ap = —JACl + AC2 + 2AC3 (9a)
aAQ = 4AC1 - AC3 (9b)

Finally, the constitutive equation for each bar in the E/PP

model may be written
IF (C, = !1/0.2 AND C.As. > 0)
i i it -

THEN ACi = 0 ELSE AC, = Asi/(xi

i (10)

For the E/B model the equation is similar but significantly

different:

1
L]

IF 8, > 1/(1i THEN ALi

ELSE ac; = Asi/ui (11)
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5
In each case the ELSE clause represents elastic behavior and

the 1IF clause represents the idealized inelastic behavior. When

all three bars are elastic, the solution for either model may be
written
AP = (2— + 1 + 2-)Av - (Lg + £~)Aw (124)
1 3 91 %3
20 = -(22 + 24y + (:Tg + 1w (12b)
ay ay 1 ay

Equations (12) could be solved for Av and Aw. However, in each

of our examples we will apply only one load at a time so that the
zero load equation is trivially solved to relate Av and aw and the
other eguation relates load and displacement. 1In all cases,

we will regard one of the displacements as the control variable.

3. Examples. As an example to illustrate unstressing
we take ai = (2, 1, 4), let Q be the only load, and increase the
control displacement w under Q from 0 to 3. For the E/PP model
- this example is essentially similar to Drucker's [1l}.
The results are shown in Table 1 and Figs. 3 and 4; details
are given in the Appendix. The “status" column in Table 1
shows for each bar if it is elastic (E), yielding in tension (T)
' or compression (C), or buckling (B). A "stage" is the time spent
with no bar changing status, stage lL is the limit of stage 1 as
l bar 1 reaches yield and changes from E to C, etc.
As shown in Table 1 as w is increased first bar 3 and then
l bar 1 yield in compression. However, as is clear from Fig. 1,
i
!

a mechanism motion with bar 2 rigid would require bar 3 to
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lengthen. Therefore, in stage 3 bar 1 elastically unloads through zero
and eventudlly ylelds in tension as the yield-point load is recuched.
The dashed curves in Figs. 3 and 4 respectively, show the louad-
displacement history and the shortening history of bar 3.
Stagyes 1 and 2 do not involve unstressing or tensile yireld so
thiat they are the same for the E/B model. However, 1n stage 3
as buai 3 starts to reclaim its buckling deformation, there is no
change in its force. Since bar 1 is now buckling C. also re-

1
mains constant. Therefore, equilibrium shows that C and the load

are also constant. Thus, as w increases bar AB rotates abcut the
unchanged location of the top of bar 2. However, this situation
lasts only until s, is reduced to 53 at which point it resumes
elastic behavior in stage 4. Since tensile yielding is not
considered, stage 4 continues until bar 2 reaches buckling. The
buckling collapse mechanism of the truss thus involves a r1otation
about the top of bar 1. The results are shown by the solid
curves in Fiys. 3 and 4. Notice the finite horizontal portion ot
the load-displacement curve in stage 3, followed by further incrcease
of load in stage 4.

As a sccond example to illustrate non—uniqueness: we consilider
a truss with a; = (4, 1, 2) where P 18 the only load. The
control variable v is to be increased from 0 to 1. VYtor the E/pPP
model the all-elastic stage 1, shown in the top line of Table 2
ends when bars 1 and 3 both reach compressive yleld at the same
instant. Therefore, in stage 2, AC1 = AC3 = 0 and since there is
no load @ Eq. (9b) becomes an identity. Therefore, the only

information about Aw comes from (8) and the inequalitics in (10)

tor bars 1 and 3:

*Other simple examples of non-uniqueness are discussed in [4] and [4].

P i mbe R e e s s awes .t s e e e rwme e s e

pot'a

W -




7
Asi = 4Aw - 34v > 0 As3 = 28v - Aw > 0 (13)
These must apply for any infinitesimal inciement 1n stage 2,
which leads to '
3/4 < dw/dv < 2 (1d)

as shown 1in the last column for stage 2. During this stage the

load P must increase with v and the bar forces are all unique,
but w may take any value permitted by (14). However, we note
that once w has been established for any particular v, the ]
restrictions (14) apply from that point. Therefore, althouy! q
not unique as v is increased, any solution reached is stable
if v 1s held constant at any time.

Figure 5 shows the strain-path trajectory of bars 1 and 3.
It is unique along OA in stage 1, but during stage 2 it may follow any 1
path with positive slope in the domain ABC. In particular,
at stage 2L it may have reached any point on the line BC.
However, if the solution at v = 3/4 is observed to be at point D, say,

: then the possible solutions when v = 1 are restricted to the segment ’

EF.

For the E/B model the equations and unique part of the
results are exactly the same, so that we have not repeated them

in Table 2. However, the inequalities apply to the total shortening

el

rather than instantaneous increments, so that (13) and (14) must

be replaced by

s, > 8, = 1/4 82 > 8, = 1/2

(3/4)v + 1/16 < w < 2v = 172 (15)

N |
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Not only is the solution for w not unique, it is only neutrally
stable and could change from one value to another with no change in
v. Thus, at stage 2L it could be any point on BC regyardless of

1ts eartietr values at v = 3/4.

The tinal example discusses superposition. We return to
the first truss where ui = (2, 1,4) and control both v and w,
increasing them from zero to w = 1/4, v = 1. For the E/pP
model the final loads depend upon the order in which the displace-
ments are increased. Suppose that they are applied in the orde:

v, w; i.e., v is increased to 1 with w held at zero, then v 1is
held at 1 while w is increased to 1/4. The light solid

curve ABCDE shows the history of load Q; P would have a similar
curve. Complete results may be found in the Appendix. The
final state when v = 1, w = 1/4 is shown in line 1 of Table 3.

On the other hand, if w is first increased to 1/4 and then v
is increased to 1, the history of Q is given by the heavy solid
curve AFGHI1J in Fiq. 6. Not only is the history quite different,
but the final load values (points E and J) do not oven agrce in siyn.
Line 2 of Table 3 lists all final values.

If the principle of superposition were valid, we could
find two components corresponding to V-only and Ww-only displace-
ments and then add them. Lines 3 - 5 in Table 3 show the
final results, and we see that line 5 is quite different than either
lires 1 or 2. 1In terms of Fig. 6, we could add the w-only <olu-
tion AFG to the v-only solution ABCD by translating the first
curve so that A is at D. The resulting curve ABCDNM has its
new part shown light dashed.

The order of superposition, of course, does not matter.

It v-only is added to w-only, the curve AFGKLM has exactly the same

terminal point M,

- RARE . A 8 g A G © AP A S M O e i Y o AT s e we
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For the E/B model the shortenings, bar forces, and loads are
all unique functions of the instantaneous displacements, so that
curves ABCD and AFGHD in Fig. 7 both end at the same stute D.

The complete solution at the final point v = 1, w = 1/4 is shown
in line 6 of Table 3. Observe that the loads are very much
ditferent from those required by the E/PP model, essentially
because the latter had bar 1 with substantial yielding in tensiun.

However, as shown by lines 7, 8, 9 in Table 3 and by
curves ABCL or AFKL in F.g. 7, the results of superposition

still do not agree with the actual solution.

f
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APPENDIX
We present here some of the intermediate steps ot the
examples in Section 3. During a stage in which all bLars are
elastic, it fullows from Egs. (8) and the "ELSE" part of (lu)
or (11) that
AC. = (4Aw - 3@1, Av, 2Av - ég) (AD)
i ay oy

Further, 1f any bar is inelastic, the corresponding component of
ACi is replaced by zero. Therefore, we can immediately writc
an explicit expression for ACi in terms of &w and Av foir o oany
stage of loading.

Example 1. 1In this example

4 = = J/ s - .
a, = (2, 1, &) Yi (4, 16, 1) /16 s, (2, 4,
{(A2)
so that Eq. (Al) can be written
AC, = (8, 0, -1)aw/4 + (=3, 2, 1)Av/2 (A3)

i
The only non-zero load is Q, hence it follows from Ey. (9%a)

Ap = -3AC, + AC

1 2 + ZAC3 = 0 (Ad)

Substitution of (Al}) or its partially inelastic teplacement in
(Ad4) produces an equation which is easily solved for Av in terws
of the control variable Aw. Thus we begin with

Staye 1. EERE

A
i

<
]

(~24-2)Aw/4 + (9 + 2 + 2)v/2 =0

Av = Aw (AY)
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For the E/PP model this stage will end when bar 3 reaches

compressive yield, i.e., when

C3 = 0 + Aw/4 = 1/16 Aw = w = 1/4 (A6) ;
3

Equations (AS), (A6), and (8) - (1l) then determine the complete
solution for stage 11, as given in line 1 of Table 1.
For stagye 2, Eq. (AS) is replaced by

Stage 2. EEC

AC, = (2, 0, 0)Aw + (-3, 2, C)Av/2

AP = -6Aw + (9 + 2)Av/2 = 0 Av = (12/11) Aw (A7)

This stage ends when bar 1 yields in compression. Since C1 = 1/8

at the end of stage 1 (see line 1 of Table 1), we have

C1 = (1/8) + (4/11)tw = 1/4 Aw = 11/32 (A8)

Equations (A7), (A8), and (8) ~- (11) then give the complete

increment solution during stage 2:

Av = 3/8 Asi = (1/32) (8, 12, 13)
ACi = (1/32) (4, 12, 0) AQ = 1/2 (A9)

When these are added to the stage 1L values in line 1 of Table 1,
we obtain the complete solution at stage 2L as shown 1n line 2.
At this point it might appear logical to assume

Stage 3X. CEC

ACy = (0, 1, 0)Av

AP = av = 0 Asy = (4, 0, ~1)Aw (A10)
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tiowever, since Aw is positive, we would be predicting Abj < 0
which is not consistent with the assumption of yielding. There-
fore, instead we write

Stage 3. CEE

ACi = (0, 0, ~1)Aw/4 + (0, 2, 1)4v/2

AP = -Aw/2 + (2+2)Av/2 = 0 Av = Aw/4 (All)

This stage ends when bar 3 yields in tension:

N

C3 = 1/16 - Aw/8 = -1/16
dw = 1 Av = 1/4 Asi = (13, 1, -2)/4
ACi = (0, 2, -1)/8 4Q = 1/8 (A12)

Addition of these values to those in line 2 of Table 1 produces
the values in line 3.

In the final stage

Stage 4. CET

Cl = (o, AV: 0)

ap = Av = ACi =90 Asi = bw(4, 0, -1) (Al13)

which is the collapse mechanism about the end of bar 2. Since
our program calls for w to increase to 3, we set Aw = 45/12

in Egs. (Al3) and add to line 3 to get line 4 in Table 1.

For the E/B model, Eqs. (AS) through (A9) are still applicable

hence the solution is exactly the same through stage 21,.
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However, since 8; = 21/32 is beyond the buckling value 53 = 1/4,
Eq. (Al0) is a valid description with bar 3 unstressing, but

remaining buckled, until

21/32 - Aw = 1/4 Aw = 13/32

7]
i

Av = AP = AQ = ACi =0 Asi = (13/32) (4, 0, -1) {Al4)

Addition of these values to line 2 gives line 5 in Table 1.
Bar 3 now resumes elastic behavior, hence stage 4 is described
by Eq. (A8). Since tensile yield is not considered, this stage

continues until bar 2 buckles:

52 = 5/8 + dw/4 = 1 Aw = 5/2 Av = 5/8
ac; = 1/16(0, 6, -3) AQ = 3/16
8s; = (1/8) (39, 3, -6) (A15)

Addition of (Al5) and line 5 of Table 1 produces line 6.
In the final stage

Stage 5. BBE

ACi = (0, 0, 2Av - Aw)/4

AP Av - Aw/2 = 0 Av = Aw/2

AQ = ACi =0 Asi = (5, 1, 0)Aw/2 (Alb)

This is a mechanism motion of rotation about bar 3 and will )
cont inue until w reaches its final value of . Thus line 7 ot
Table 1 is obtained by setting Aw = 1/2 in (Al6) and addiny

the result to line 6.
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Example 2. 1In this example Egs. (A2) - (A4) are replaced by

a; =4, 1, 2) Y, = (1, 16, 4)/lo

Fi Ei - (1, 4, 2)/4 (AL7)
AU = 42C; - AC, = 0 (Al18)
6C; = (2, 0, -1)Aw/2 + (-3, 4, 4)bv/4 (A19)

Therefore, we can find Aw in terms of the control variable fv.
when all bars are elastic, we use (Al9) and obtain

o Stage 1. EEE

AQ (8 + 1)Aw/2 + (-12 - 4)A4v/4 = 0

#

Aw (8/9)Av {A20)

For the E/PP model this stage ends when bars 1 and 3 rcach yield
simultaneously at v = Av = 3/20 which leads to the values in
line 1 of Table 2.

In stage 2 bars 1 and 3 are both yielding hence

Stage 2. CEC

ACi = (0, 1, 0)av
L
Z 6Q = 0 AP = Av
As-1 = Aw(d4, 0, -1) + Av(-3, 1, 2) {A21)
o j The only information available for Aw is in the Inequalities
(13). This stage ends when the remaining bar yields:
\

N+ A A A L U+ 5 N kS s ki a o
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C2 = 9/20 + Av = 1 Av = 11/20 (A22})
With this value of Ay, the sum of lines 1 and 2 in Table 3
Jives line 3. '
Example 3. In these final examples the truss properties

are ajain given by (A2) and the fully elastic force-~increment
solution by (A3). Both v and w are controlled, and we will find
it Cconvenient to express the kinematic and static equations

(8) and (9) in 1integrated form:

s, = (4, 0, ~1)w + (-3, 1, 2)v (A23)
Q= GCI - C3
P = -3Cl + C2 + 2C3 (A24)

Thus, given the control variables, (A23) gives an explicit
expression for the shortenings. Using (A2) or its non-elastic
replacement, we find the force increments, but we can wait
and use the integrated forces to find the loads directly from (A24).
In example 3A we first increase v to 1 and then increase
w to 1/4; in 3B we reach the same final values by increasing
first w and then v.
The computations fall into a simple pattern and are conveniently
presented in tabular form in Table 4. We consider first example
3A for an E/PP material. The zeroes in the unnumbered top
line emphasize that we start from the zero state and obtain the

solution by finite increments.

e e - [P
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In stage 1 all bars are elastic and v 1s the active contiol

varilable. We denote its increment froim zero by & in line 1,

column 1, and express the bar-force inciements in teims of &
in column 3. In this incremental stage we do not necd the items
1in columns 2 or 4. Stage 1 will terminate when bar 3 :rcaches i,

yleld value in compression. The resulting equation for the
increment A is written in column 5, and :1ts solution 1s entered
in column 6.

The solution at stage 1L is then written in line 2.
Values for the displacements in column 1 and bar forces in column
3 are obtained by putting the value A = 1/8 in line 1 and
adding the result to the zero values at the beginning of stage 1.
Although we could treat the shortenings S5 and loads Q and P
in the same incremental fashion, it is more convenient to use
(A23) and (A24) and complete columns 2 and 4 directly frcem the

w, v, and Ci values in line 2.

Line 3 treats the next increment in the same way. In column
3,ACl and AC2 still have their elastic values from (A3), but
AC3 = 0 since it is already yielding. Stage 2 terminates when

bar 1 yields in tension, which leads to the equation in column 5
and the solution A = 1/24 in column 6.

For line 4 we set A = 1/24 in line 3 and add the result to
line 2 to obtain values of w, v, and Ci' Again, the values of
$;+ Q and P are obtained directly from (A23) and (A24).

Lines 5 and 6 contain the solution for stages 3 and 31
figured in the same way. No bar changes state before v rcaches
its final value, hence the equation in column 5 is simply v - 1.
Line 6 1s also recorded as line 3 in Table 1 as tnhe v-conmponent

for "superposition®.
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In stage 4 control switches to w. Since the elastic

solution for w increasing produces a positive AC1

and negative AC both plastic bars now unload and all three bars

3
are elastic in line 7. Now w reaches its final value with no bar
changling state so the equation in column § is w = 1/4. Line
8 gives the final values for example 3A; the same values are
1ecorded in line 1 of Table 3.

Example 3B for the E/PP material is treated in exactly
the same way. The details are displayed in lines 9-18 of Table 4,
and the final results from line 18 are recorded as line 2 of
Table 3. Also, line 12 of Table 4 is repeated as line 4 of
Table 3 for the w-component for “"superposition".

For the E/B model and example 3A, stages 1, lL, and 2 are
the same as for the E/PP model. However, since the E/B model

does not have any constraint on allowable tensile loads, the

terminating condition is

v=1/8 +4 =1 a = 17/8 (A25)

Substitution of this value in line 3 of Table 4 and addition

to line 2 gives the stage 2L solution in line 19 for the E/B
model. This line is also written as line 7 of Table 3.

Since bar 3 has undergone a finite amount of buckling,

it will remain in the buckled state in stage 3 as shown in line
20 of Table 4. 1In fact, it is still buckled when w reaches its
final value of 1/4. The final values at stage 3. are listed in
line 21 of Table 4 and line 6 of Table 3. From column 2 and
the last Eq. (A2) we verify that bar 3 is still well within the
buckled state, bar 1 is in tension, and bar 2 is on the verje of

buckling.

A
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In example 3B the two models are exactly the same through staygc
2L. In stage 3 bar 1 will remain in the buckled state until

1ts shortening reduces to s To determine buckling or unbuckiig

1
criteria in this example it is necessary to have the Asl ‘
expressions available as given for example in line 22 column 2.
in this case the stayge ends when bar 1 unbuckles at < = 1/b.
Line 23 shows the solution at stage 3L. The shortening in
column 2 is, of course, the same whether it is computed by
adding the increment in line 22 to the value at stage 2L in line 12,
or directly from Eq. (A23).

The rest of the table is completed in the same fashion. As

noted, lines 27 and 21 are identical for this model.

)
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N
1) 2) ) %) (s) (O
Line Stage Status ) v sl [ ] r Terminate 4
2x A (R/*D) | ] o 0 0 0 0
1 1 [ 0 [ (-3,2,1)4/2 Cy=~04+8/2=1/16 /8
2 1L o 1/8 (-3,1,2)/8 (-3,2,1)/16 © ~13/16  13/16
3 2 ERC 0 a (-3,2,004/2 (:l = =3/16 - 34/2 = -1/& 1/24
4 2L 0 1/6 (-3,1,2)/6 (~12,16,3) /48 -17/16 25/24
H 3 T=C 0 a (0,2,008/2 vel/64bal 5/6
6 an 0 1 (-3,1,2) (=4,16,1) /16 -17/16  15/8
7 . m 8 0 (8,0,-1)/4 vw=0+de1/k 1/4
8 oL 144 1 ’ (-8,4,7)/4 (1,4,0)/4 1 174
Ex 38 (E/PP 0 0 ° ° ° 0
9 1 (<43 A ] (8,0,-1)a/4 c1 =0+ 28=1/4 1/8
10 1L 1/8 L] (4,0,-1)/8 (8,0,-1)/32 33/32  -13/16
u 2 [ -3 a 0 (0,0,-1)a/4 . vel/8+8=1/4 1/8
12 P e o (4,0,-1)/4 (4,0,-1)/16 17716 -1/8
13 3 = ° 8 (-3,2,1)8/2 Cy = ~1/16 + 4/2 = 1/16 1/4
14 i 176 174 (1,1,1)/4 {-2,4,1)/16 -9/16 34
15 . = o & (-3,2,008/2 C = ~1/8 - 3472 = -1/4 1/12
16 4L /4 1 (0,4,5)/12 (-12,16,3) /48 -17/16 29/24
17 s ™= [ [ (0,2,0)8/2 veal/l3+bal 2/3
3 L 1/4 1 (-8,6,7)/8 (-4,16,1)/16 -17/16 15/8
5 34 (KW | .
19 n 0 1 («3,1,2) (-24,16,1) /16 ~97/16  45/8
20 3 m a 0 (2,0,0)a vw=0+dal/s 1/4
21 b 8 1/4 1 (-8,4,7)/4 (-16,16,1)/16 ~£5/16 33/8
S W N7 N— )
22 3 mz [ [} (~3,1,2)a {0,2,2)a72 5 - 134 = 1/2 /6
3 n /4 116 (6,2,1)/12 12,8,1) /48 AT/48 13724
24 L) = 0 a (-3,1,2)a (-3,2,1)a72 oG- 1/12 ¢+ 28 = 1/4 1/12
23 L YL ¥ 1,1,1)/4 (6,12,3) /748 116 0
26 3 s [ [ (-3,1,2)a (-3,2,0)a/2 vel/é ¢ b} 3/4
1 L 1/4 1 (-8,4,7)/4 {~16,16,1)/16 -65/16 33/8
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